علم داده یک فرصت شغلی است که بسیاری از افراد دنبال آن هستند. در این یادداشت چگونگی ارائه یک چارچوب رقابتی به شما ارائه شده است.
۱- مهارت خود را در جبر، علم آمار و یادگیری ماشین افزایش دهید. یک دانشمند داده فردی باید باشد که در علم آمار بهتر از هر مهندس نرم افزار و همچنین یک مهندس نرم افزاری است که نسبت به هر متخصص آمار بهتر است. ایده مناسب این است که تعادل درست را در هر یک از این دو زمینه حفظ کنید. به عبارتی دیگر از اینکه تأکید بیش از اندازه بر روی هر یک از این دو زمینه، اجتناب شود.
۲- یاد بگیرید که مه داده را دوست داشته باشید. 🙂 دانشمندان اطلاعات با حجم وسیعی از داده ها سروکار دارند که در آن محاسبات اغلب نمی توانند با استفاده از یک ماشین انجام شوند. اکثر آنها از نرم افزار/الگوریتم های مخصوص مه-داده ها مانند Hadoop، MapReduce یا Spark برای دستیابی به پردازش توزیع شده استفاده می کنند. دوره های آنلاین زیادی وجود دارد که واقعا می تواند به شما در یادگیری مه داده کمک کند؛
۳- دانش خود را در مورد بانک های اطلاعاتی ارتقاء دهید. با توجه به حجم زیادی داده ها که تقریبا هر دقیقه تولید می شود، اکثر صنایع از نرم افزار مدیریت پایگاه داده مانند MySQL یا Cassandra برای ذخیره و تجزیه و تحلیل داده ها استفاده می کنند. بینش خوبی از عملکرد DBMS مطمئنا راه زیادی برای حفظ کار رویایی شما به عنوان یک دانشمند داده خواهد شد.
۴- کد نویسی کنید و زبان های برنامه نویسی مرتبط را یاد بگیرید. شما نمیتوانید یک دانشمند داده خوب باشید تا زمانی که نتوانید از طریق کدنویسی و زبان برنامه نویسی برای برقرار ارتباط با داده ها استفاده کنید. فرض کنید یک طبقه بندی مناسب و تحلیلی روی داده ها انجام شده باشد؛ اگر اسکریپت نویسی ندانید، نتیجه تحلیل همانند نقاشی روی دیوار است که توانایی تحلیل نتایج را نخواهید داشت؛ پس اگر نوشتن و درک اسکریپت ها مهارت داشته باشید، می توانید نتایج را تفسیر و درک کنید. یک کدنویس خوب ممکن است یک دانشمند بزرگ داده نباشد اما یک دانشمند بزرگ داده مطمئنا یک برنامه نویس خوب محسوب می شود.
۵- در پردازش، بصری سازی و نحوه گزارش گیری از داده ها ماهر باشید.
پردازش داده ها فرایند تبدیل فرمت خام داده ها به یک فرمتی است که برای مطالعه، تجزیه و تحلیل و بصری سازی مناسب باشد. بصری سازی داده ها و نحوه ارائه نتایج تحلیلی آن به مجموعه ای از مهارت های مهمّی نیاز دارد که دانشمند داده در هنگام تسهیل سازی تصمیمات مدیریتی و اداری با استفاده از تجزیه و تحلیل داده ها، به شدت به آن متکّی است.
۶- روی پروژه های واقعیِ علم-داده کار کنید. صرفاً در دنیای تئوری های علم داده نباشید، بلکه شما زمانی تبدیل به یک دانشمند اطلاعات خوب می شوید، که آنرا به یک تجربه واقعی (پروژه علم داده) تبدیل کنید. در اینترنت برای پروژه های علم داده (Google quandl) جستجو کنید و زمان خود را برای ساخت قلعه خود سرمایه گذاری نمایید.
۷- در همه جا به دنبال افزایش دانش خود باشید.
یک دانشمند داده یک بازیگر تیم است و هنگامی که شما با یک گروه از افراد (مشابه زمینه کاری خود) همکاری می کنید، تماشای مشتاقانه همیشه به شما کمک می کند. یاد بگیرید برای ایجاد شهود بصری مورد نیاز در تحلیل داده ها و تفسیر نتایج آن به به عادات کاری افراد هم گروه خود توجه کنید و آنچه که برای شما مناسب را ببینید، یاد بگیرید و استفاده کنید.
۸- داشتن مهارت های ارتباطی
مهارت های ارتباطی یک دانشمند-داده را از یک دانشمند-داده خوب متمایز می سازد. در اغلب موارد شما باید یافته های تحلیلی خود را به افرادی که مهم هستند ارائه دهید و آنها را از پشت درهای بسته رها کنید. توانایی استفاده از کلمات مناسب در موقعیت های غیر منتظره را داشته باشید.
۹- رقابت
وبسایت هایی مانند Kaggle یک زمین تمرین عالی برای دانشمندان داده هستند زیرا آنها سعی می کنند همکاران خود را پیدا کنند و با یکدیگر به رقابت بپردازند تا رویکردهای بصری خود را به نمایش بگذارند و مهارت هایشان را افزایش دهند. با افزایش اعتبار گواهینامه های ارائه شده توسط این سایت ها در صنعت، این مسابقات به سرعت در حال تبدیل شدن به یک مرحله برای نشان دادن میزان درگیری و شرکت داشتن ذهن نوآورانه آنها در اینگونه محیط های رقابتی است.
۱۰ – با انجمن های دانشمندان داده بروز بمانید
وب سایت هایی مانند KDNuggets، Data Science 101 و DataTau را دنبال کنید تا با اتفاقات جهان علم داده همگام شوید و با انواع فرصت های شغلی که در حال حاضر در این زمینه ارائه می شوند، آشنا شوید.